Comments on Earlier Problems

76:60 (Peter Weinberger) Let $|f|$ denote the number of non-zero coefficients of a polynomial f. Is there a function A such that $|(f, g)| \leq A(|f|, |g|)$? Can such an A be a polynomial? The example $f = (x^a b + 1)(x^b + 1)/(x + 1)$, $g = (x^a b + 1)(x^b + 1)/(x^a + 1)$ with $a > b - 1$, a even, b odd shows that if such an A exists then $A(n, n) \gg n^2$.

Solution: Andrzej Schinzel writes that the answer to this problem is negative, and a simple counterexample is $f = x^a b - 1$, $g = (x^a - 1)(x^b - 1)$, where $|f| = 2$, $|g| = 4$ and $|(f, g)|$ can be arbitrarily large. The only difficult case in characteristic 0 is $|f| = |g| = 3$.

86:05 (Michael Filaseta) Is $f_n(x) = \frac{d}{dx}(x^n + x^{n-1} + \cdots + x + 1)$ irreducible for all positive integers n? For almost all n?

Solution: The “almost all” question is answered in the affirmative in

A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov, Classes of polynomials having only one non-cyclotomic irreducible factor, Acta Arith. 90 (1999) 121–153,

where Theorem 1 states that “if $\varepsilon > 0$ then for all but $O(t^{1/3+\varepsilon})$ positive integers $n \leq t$ the derivative of the polynomial $f(x) = 1 + x + x^2 + \cdots + x^n$ is irreducible.”

88:06 (Emil Grosswald) Mike Filaseta proved that almost all Bessel polynomials $[\text{polynomial solutions of } x^2 y'' + xy' - n(n+1)y = 0 \text{ with } y(0) = 1]$ are irreducible over \mathbb{Q}. Get rid of “almost all”.

Solution: In work submitted for publication, Filaseta and Trifonov write the Bessel polynomials as

$$y_n(x) = \sum_{j=0}^{n} \frac{(n + j)!}{2j(n - j)!j!} x^j$$

and prove that if n is a positive integer and a_0, a_1, \ldots, a_n are arbitrary integers with $|a_0| = |a_n| = 1$ then

$$\sum_{j=0}^{n} a_j \frac{(n + j)!}{2j(n - j)!j!} x^j$$

is irreducible.

The techniques are similar to those used in

93:20 (Eugene Gutkin via Jeff Lagarias) [...] consider the polynomials

$$p_n(x) = \frac{(n - 1)(x^{n+1} - 1) - (n + 1)(x^n - x)}{(x - 1)^3}$$

[which arise in the solution of $\tan n \theta = n \tan \theta$] for $n \geq 1$.

Conjecture. $p_n(x)$ is irreducible if n is even, and is $x + 1$ times an irreducible if n is odd.
Solution: This is true for almost all n. Theorem 4 of the four-author paper cited above states that if $\epsilon > 0$ then for all but $O(t^{1/5+\epsilon})$ positive integers $n \leq t$ the polynomial $p(x) = (n-1)(x^{n+1}-1)-(n+1)(x^n-x)$ is $(x-1)^3$ times an irreducible polynomial if n is even and $(x-1)^3(x+1)$ times an irreducible polynomial if n is odd.

95:18 (Martin LaBar, via Richard Guy) Is there a 3×3 magic square with distinct square entries?

Remark: Comments on this problem have appeared in each problem set since it was first proposed.

constructs parametrized families of 3×3 matrices with distinct square entries and with all sums equal except that along the non-principal diagonal.

97:22 (John Selfridge) Let $n = rs^2$, r square-free, $r > 1$. It is conjectured that for all such n except $n = 8$ and $n = 392$ there exist integers a, b with $n < a < b < r(s+1)^2$ such that nab is a square.

Remark: See the paper,

Selfridge reports that he and Aaron Meyerowitz have proved that if there is a counterexample $n > 392$ then n is at least on the order of 10^{30000}.

Problems Proposed 16 & 19 Dec 99

99:01 (John Wolfskill) Let $d \equiv 3 \pmod{4}$ be positive and squarefree. Let a fundamental unit in $\mathbb{Z}[\sqrt{d}]$ be given by $\epsilon = a + b\sqrt{d} > 1$. Characterize those d for which $\sqrt{\epsilon}$ is in $\mathbb{Q}(\sqrt{\epsilon})$.

Remarks: $\sqrt{\epsilon}$ is in $\mathbb{Q}(\sqrt{\epsilon})$ for all prime d and for some but not all composite d.

Gary Walsh shows that the following are equivalent:

a) $\sqrt{\epsilon}$ is in $\mathbb{Q}(\sqrt{\epsilon})$;

b) at least one of the equations $x^2 - dy^2 = \pm 2$ is solvable in integers x and y;

c) the prime over 2 in $\mathbb{Q}(\sqrt{d})$ is principal.

Characterizing d such that $x^2 - dy^2 = -1$ has a solution is a notorious open question, which suggests that there may be no simple solution to the current problem.

Walsh’s argument, as presented by Wolfskill, runs as follows. Let $K = \mathbb{Q}(\sqrt{\epsilon})$, let α in K be such that $\alpha^2 = \epsilon$. Note that the norm of ϵ is 1, whence K/\mathbb{Q} is Galois and non-cyclic. Since α is in K we have $\alpha = r + s\sqrt{d} + t\sqrt{d'} + u\sqrt{d'd''}$ for some rational r, s, t, and u and some d' with $\sqrt{d'}$ in K. Let σ be the element of the Galois group of K/\mathbb{Q} fixing \sqrt{d} but not fixing $\sqrt{d'}$. Then $(\sigma(\alpha))^2 = \sigma(\alpha^2) = \sigma(\epsilon) = \epsilon = \alpha^2$, so $\sigma(\alpha) = \alpha$ or $\sigma(\alpha) = -\alpha$. If $\sigma(\alpha) = \alpha$ then α is in $\mathbb{Q}(\sqrt{d})$ but then $\alpha^2 = \epsilon$ contradicts the hypothesis that ϵ is a fundamental unit in $\mathbb{Q}(\sqrt{d})$, so $\sigma(\alpha) = -\alpha$, so $\alpha = t\sqrt{d'} + u\sqrt{d'd''}$.
Now assume $\sqrt{2}$ is in K, so $\alpha = t\sqrt{2} + u\sqrt{2d}$, t and u rational. From $\alpha^2 = \epsilon$ we get that $2(t^2 + du^2) = a$ and $4tu = b$ are both integers, from which it is easy to deduce that $2t = x$ (say) and $2u = y$ (say) are integers. Then $(x^2 - dy^2)^2 = 4(a^2 - db^2) = 4$, so $x^2 - dy^2 = \pm 2$.

Conversely, suppose x and y are positive integers such that $x^2 - dy^2 = \pm 2$. Note that x and y are odd. Let $a = (x^2 + dy^2)/2$, $b = xy$. Then $a^2 - db^2 = 1$, so $a + b\sqrt{d}$ is a unit in $Q(\sqrt{d})$. Also, $(\frac{x}{2}\sqrt{2} + \frac{y}{2}\sqrt{2d})^2 = a + b\sqrt{d}$, so $a + b\sqrt{d}$ must be an odd power of the fundamental unit in $Q(\sqrt{d})$—otherwise, $\frac{x}{2}\sqrt{2} + \frac{y}{2}\sqrt{2d}$ would be in $Q(\sqrt{d})$. So, $\sqrt{2}$ is in $Q(\sqrt{\epsilon})$.

99:02 (Greg Martin) Consider the following “proof” that 4680 is perfect: 4680 = $2^3 \cdot 3^2 \cdot 5 \cdot 13$, so $\sigma(4680) = (1+2+2^2+2^3)(1+3+3^2)(1+(-5))(1+(-13)) = 9360 = 2 \times 4680$. Allowing the use of $\sigma(-p^n) = \sum_{j=0}^{n} (-p)^j$, is there a “spoof perfect number” with exactly 3 distinct prime factors?

Remark: If so, it must be negative.

Solution: Dennis Eichhorn found that $-84 = 2^2(3)(-7)$ is spoof-perfect, and Eichhorn and Peter Montgomery independently found that $-120 = 2^3(3)(-5)$ is spoof-perfect. Montgomery also found that $-672 = (-2)^3(3)(7)$ leads to

$$\sigma(-672) = (1 - 2 + 4 - 8 + 16 - 32)(1 + 3)(1 + 7) = -672.$$

Alf van der Poorten asked whether there are any odd spoof-perfects.

John Selfridge asked whether 4680 is the smallest positive spoof-perfect.

See also 99:08, below.

99:03 (Mike Filaseta) Find m_0 such that if $m \geq m_0$ and $m(m-1) = 2^a3^b5^c$ and $(m',6) = 1$ then $m' > \sqrt{m}$.

Remark: See

for a similar but ineffective result derived from work of Mahler.

99:04 (Mike Filaseta) Show that every $n \times n$ integer matrix, $n \geq 2$, is a sum of 3 squares of $n \times n$ integer matrices.

Remark: What is wanted is an argument more transparent than that in

99:05 (Zachary Franco) Call n equidigital if each digit occurs equally often in the repeating block in the decimal expansion of $1/n$. It is easy to see that if p is prime and 10 is a primitive root $\mod p$ then p is equidigital. Are there any equidigital primes p for which 10 is not a primitive root?

Remarks: The answer to the corresponding question in base 2 is yes; 2 is not a primitive root $\mod 17$ but the binary expansion of $1/17$ is .00001111.

There are equidigital composites, e.g., $n = 1349 = 19 \times 71$.
Mike Filaseta notes that if $p \equiv 11 \pmod{20}$ is prime and 10 is of order $(p - 1)/2 \pmod{p}$ then 10^k runs through the quadratic residues \pmod{p}, and since there are more quadratic residues in $[1, (p - 1)/2]$ than in $[(p + 1)/2, p - 1]$ for such p $(p \equiv 3 \pmod{4})$ p can’t be equidigital. For example, $1/31 = .032258064516129$ has 9 small digits and 6 large ones. Perhaps there are similar results for 10 of order $(p - 1)/k$ for $k = 3, 4, \ldots$.

99:06 (Kevin O’Bryant) Write $\sqrt[1]{a_1, a_2, \ldots}$ for the continued square root

$$\frac{1}{\sqrt{a_1 + \frac{1}{a_2 + \ldots}}}$$

where a_1, a_2, \ldots are positive integers. Every real number r, $0 < r < 1$, has such an expression, and the expression is unique in the same sense as for simple continued fractions. Does $3/4$ have a finite continued root?

Remark: $2/3 = \sqrt{2, 16}$, $22/47 = \sqrt{3, 1098, 2892, 410, 256}$.

99:07 (Bart Goddard) Let $f : (0, \infty) \to (0, \infty)$ be strictly decreasing and onto with $f(1) = 1$. Let g be the functional inverse f^{-1} of f. For a_0 real and positive, define integers a_0, a_1, \ldots and reals $\alpha_1, \alpha_2, \ldots$ by $a_j = [\alpha_j]$, $\alpha_j = g(\alpha_{j-1} - a_{j-1})$. Write $(\alpha_0)_f$ for the sequence a_0, a_1, \ldots. Let $c_0 = a_0$, $c_1 = a_0 + f(a_1)$, $c_2 = a_0 + f(a_1 + f(a_2))$, etc. Note that $f(x) = 1/x$ gives the usual continued fraction expansion of α_0, and $f(x) = 1/\sqrt{x}$ gives the expansion of 99:06.

Some interesting examples are

- $f(x) = x^{-5}$, $(\sqrt[5]{7})_f = (1, 1, 1, \ldots)$
- $f(x) = 1/\Omega(\epsilon x)$, where Ω is the Lambert Ω-function,

$$\pi_f = (3, 3033, 23766810023426903113005, 2279, 2, 864, \ldots)$$

1. Given f, which numbers have finite expansions? periodic expansions? Is it true that if $f(x) = x^{-2/3}$ then $(\sqrt[3]{3})_f = (1, 1, 1, 2)$?

2. Is there an f such that $(\alpha)_f$ is periodic for all algebraic α of degree 3?

3. Find f such that $(\pi)_f$ has a recognizable pattern.

4. Find f such that $(\epsilon)_f$ is periodic.

5. Find conditions on f and α for $\lim_{n \to \infty} c_n = \alpha$.

Solution: (to question 4) Greg Martin notes that if $f(x) = x^{\log(\epsilon-2)/\log(\epsilon-1)}$ then $(\epsilon)_f = (2, 1, 1, 1, \ldots)$.

Remark: Jeff Lagarias refers to

Many later papers refer to this one, as may be seen from the listing on MathSciNet.
99:08 (Greg Martin) Define a multiplicative function \(\tilde{\sigma} \) (or \(\tilde{\sigma} \) if you are left-handed) by \(\tilde{\sigma}(p^r) = p^r - p^{r-1} + p^{r-2} - \cdots + (-1)^r \). Note that \(\tilde{\sigma}(n) \leq n \) with equality only for \(n = 1 \). Call \(n \) \(\tilde{\sigma} \)-perfect if \(2\tilde{\sigma}(n) = n \); examples are \(n = 2, 12, 40, 252, 880, 10880, \) and \(75852 \). Call \(n \) \(\tilde{\sigma} \)-\(k \)-perfect (or, more generally, \(\tilde{\sigma} \)-multiply perfect) if \(k\tilde{\sigma}(n) = n \) for a positive integer \(k \). Two examples of \(\tilde{\sigma} \)-3-perfects are \(n = 30240 \) and \(n = 2^{10}3^45^311 \cdot 13^2 \cdot 31 \cdot 61 \cdot 157 \cdot 521 \cdot 683 \)—there are at least 40 \(\tilde{\sigma} \)-3-perfects.

1. Are there any \(\tilde{\sigma} \)-\(k \)-perfect numbers with \(k \geq 4 \)?
2. Are there infinitely many \(\tilde{\sigma} \)-\(k \)-perfect numbers?
3. Are there any odd \(\tilde{\sigma} \)-3-perfect numbers? Any such number must be a square.

Remark: Paraphrasing email from Greg: let \(\tau(n) = n/\tilde{\sigma}(n) \), so \(\tau(n) = k \) means \(n \) is a \(\tilde{\sigma} \)-\(k \)-perfect number. Suppose \(n = p^{2k-1}m \), \(p \) prime, and \(\tilde{\sigma}(p^{2k}) = q \) is prime, and \((m, pq) = 1 \). Then it’s not hard to prove that \(\tau(n) = \tau(npq) \). In particular, if \(n \) is \(\tilde{\sigma} \)-\(k \)-perfect, so is \(npq \).

Some examples of prime powers \(p^{2k-1} \) such that \(\tilde{\sigma}(p^{2k}) \) is prime are

\[
2^1, 2^3, 2^5, 2^9, 3^1, 3^3, 3^5, 5^3, 7^1, 13^1.
\]

This makes it possible to find 40 \(\tilde{\sigma} \)-3-perfects from the four examples \(2^33^35^27, 2^53^35 \cdot 7, 2^53^35^27^313, \) and \(2^93^35^311 \cdot 13 \cdot 31 \).

Jeff Lagarias suggested looking at the Dirichlet series generating function for \(\tilde{\sigma} \), in analogy with

\[
\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^s} = \zeta(s + 1)\zeta(s).
\]

Greg finds that

\[
\sum_{n=1}^{\infty} \frac{1}{\tau(n)}n^{-s} = \zeta(2s + 2)\zeta(s)/\zeta(s + 1),
\]

but no such tidy form for \(\sum_{n=1}^{\infty} \tau(n)n^{-s} \).

99:09 (Jean-Marie De Koninck) Given an integer \(k, k \geq 2 \), not a multiple of 3,

1. prove that there is a prime whose digits sum to \(k \),
2. prove that if \(k \geq 4 \) then there are infinitely many primes whose digits sum to \(k \).

Remarks: Jean-Marie provided a table of values of \(\rho(k) \), the smallest prime whose digits add up to \(k \), for \(2 \leq k \leq 83 \), \(k \) not a multiple of 3. Your editor notes that \(\rho(56) - \rho(55) = 2999999 - 2998999 = 1000 \) and asks whether there are infinitely many \(k \) with \(\rho(k+1) - \rho(k) = 1000 \), or with \(\rho(k+1) - \rho(k) = 10^m \) for some \(m \), or whether there is an integer \(r \) with \(\rho(k+1) - \rho(k) = r \) for infinitely many \(r \).

Your editor further notes that \(\rho(34)/\rho(32) = 17989/6899 = 2.61 \) (to two decimals), \(\rho(37)/\rho(35) = 29989/8999 = 3.33 \), \(\rho(70)/\rho(68) = 189997999/59999999 = 3.17 \), and \(\rho(73)/\rho(71) = 289999999/89999999 = 3.22 \), and asks whether \(\rho(3k+1)/\rho(3k-1) \) is unbounded. Moreover, your editor also notes that \(\rho(34)/\rho(35) = 17989/8999 = 2.00 \) and \(\rho(70)/\rho(71) = 189997899/89999999 = 2.11 \) and asks whether \(\rho(k) > \rho(k+1) \) infinitely often.
Further questions: is it true that \(k > 25 \) implies \(\rho(k) \equiv 9 \pmod{10} \)? that \(k > 38 \) implies \(\rho(k) \equiv 99 \pmod{100} \)? that \(k > 59 \) implies \(\rho(k) \equiv 999 \pmod{1000} \)?

Jean-Marie also notes that it is trivial that \(\rho(k) \geq (a + 1)10^k - 1 \), where \(b = \lfloor k/9 \rfloor \) and \(a = k - 9b \); and asks whether equality holds infinitely often. For instance, it is the case when \(k = 5, 7, 10, 11, 14, 16, 17, 19, 22, 23, 28, 29, 31, 35, 40 \).

99:10 (Jeff Lagarias) Is there a field with Galois group \(S_n \), \(n \geq 5 \), whose ring of integers has a power basis?

99:11 (Sinai Robins) Let \(q \) be real, \(|q| < 1 \). Is the function given by \(f(x) = \sum_{n=1}^{\infty} [nx]q^n \) real analytic in \(x \)?

Remark: A starting place for the analytic properties of this and related series is

Wolfgang Schwarz, Über Potenzreihen, die irrationale Funktionen darstellen, I and II, Überblöcke Mathematik, Band 6, 179–196 and 7, 7–32, MR 51 #8382-3.

See also

99:12 (Jeff Lagarias) Given \(n > 3 \), find upper and lower bounds for the number of solutions \(1 < q_1 < \cdots < q_n \) of the system \(q_j^{-1} \prod_{i=1}^{n} q_j \equiv 1 \pmod{q_j} \), \(j = 1, \ldots, n \).

Remark: It is known that there are only finitely many solutions for each \(n \), in fact there is an upper bound for \(q_n \), but it does not give a good estimate for the number of solutions. \((2, 3, 5)\) is the only solution for \(n = 3 \). The problem is discussed in

Lawrence Brenton, Mi-Kyung Joo, On the system of congruences \(\prod_{j \neq i} n_j \equiv 1 \pmod{n_i} \), Fib. Q. 33 (1995) 258–267.

The review, MR 96k:11039, is also worth reading.