Lines L_1 and L_2 are given parametrically with L_1 the set of all points whose position vectors are
$$t(1, 1, 1) + (0, 1, 1)$$
and L_2 those with position vector
$$t(2, 0, 1) + (1, 1, 0).$$
Find the distance between the lines L_1 and L_2.

Hint: Find parallel planes P_1 and P_2 such that P_1 contains L_1 and P_2 contains L_2. Calculate the distance between P_1 and P_2.

Solution: P_1 and P_2 must have a common normal vector which is perpendicular to direction vectors of each of the lines. Thus we can take the normal

$$\mathbf{n} = (1, 1, 1) \times (2, 0, 1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = \mathbf{i} + \mathbf{j} - 2\mathbf{k} = (1, 1, -2).$$

The planes can be described as follows P_1 is
$$x + y - 2z = -1$$
and P_2 is
$$x + y - 2z = 2.$$

We have seen that the distance between these two planes is given by
$$\frac{|\mathbf{n} \cdot (\mathbf{a} - \mathbf{b})|}{|\mathbf{n}|}$$
with \mathbf{a} a position vector of a point in P_1 and \mathbf{b} a position vector of a point in P_2.

Here we can take $\mathbf{a} = (0, 1, 1)$ and $\mathbf{b} = (1, 1, 0)$. Now $|\mathbf{n}| = \sqrt{1 + 1 + 4} = \sqrt{6}$ and

$$|\mathbf{n} \cdot (\mathbf{a} - \mathbf{b})| = |(1, 1, -2) \cdot (-1, 0, 1)| = |-1 + 0 - 2| = 3.$$

So the answer is $\frac{3}{\sqrt{6}} = \frac{\sqrt{6}}{2}$.

1