1. (6 pts) Find a matrix T so that, if $x \in \mathbb{R}^3$ has coordinates c in the basis

$$
\begin{align*}
\mathbf{v}_1 &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, & \mathbf{v}_2 &= \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, & \mathbf{v}_3 &= \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix},
\end{align*}$$

then it has coordinates Tc in the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$ for \mathbb{R}^3.

2. (24 pts) A linear transformation from \mathbb{R}^3 to \mathbb{R}^3 is given by $L(x) = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \end{pmatrix}$.

(a) What is the kernel of L?
(b) Find a set of vectors that span the range of L. (They need not be a basis.)
(c) Find a matrix A such that $L(x) = Ax$.
(d) What is the dimension of the range of L? Give a reason for your answer.

3. (10 pts) Suppose that $A, B \in \mathbb{R}^{n \times n}$ are nonsingular and that A and B are similar. Prove that A^{-1} and B^{-1} are similar.

4. (10 pts) Suppose V is a subspace of \mathbb{R}^n and W is a subspace of V. Prove that W^\perp contains V^\perp.

WARNING: The final exam will probably not be in this room.