1. (30 pts.) Recall that Dijkstra’s algorithm finds shortest paths from v_1 to all other vertices by adding edges linking in the closest points. In the graph shown below, each edge is bidirectional; that is, you can travel in either direction on it. **Edges are labeled with upper case letters.** (Two copies of the graph are provided so you can use one as a “worksheet” if you wish.)

(a) List edges in order chosen by algorithm: A J H B C D L F R

(b) At each vertex, give the length of the shortest path from v_1 to the vertex. **Indicate which graph has your answer.**

![Graph](image)

2. (25 pts.) Consider the following eight complexity categories (remember $\lg = \log_2$):

$$\Theta(n) \quad \Theta(n^2) \quad \Theta(2^n) \quad \Theta(3^{\lg n}) \quad \Theta(n^{\lg n}) \quad \Theta(n \lg n) \quad \Theta((\sqrt{n} + \ln n)^2) \quad \Theta(2^{n + \lg n}).$$

(a) Which are equal?

$$\Theta(n) = \Theta((\sqrt{n} + \ln n)^2)$$

(b) Arrange the distinct classes in order from slowest growing to fastest growing. In other words, if $\Theta(f(n))$ is to the left of $\Theta(g(n))$, then $f(n) \in o(g(n))$.

$$\Theta(n) \quad \Theta(n \lg n) \quad \Theta(3^{\lg n}) \quad \Theta(2^n) \quad \Theta(n^{\lg n}) \quad \Theta(n \lg n) \quad \Theta(2^n) \quad \Theta(2^{n + \lg n}).$$
3. (30 pts.) The average running time for an algorithm is a nondecreasing function of \(n \) and satisfies \(T(4n) = T(2n) + 2T(n) \) for all \(n > 0 \). Furthermore, \(T(1) = 1 \) and \(T(2) = 3 \).

(a) Determine \(T(2^k) \) as a function of the integer \(k \).

\[\text{Hint: Set } t_k = T(2^k). \]

Ans. By the hint, \(t_{k+2} = t_{k+1} + 2t_k \), where \(t_0 = 1 \) and \(t_1 = 3 \). Since the roots of \(x^2 = x + 2 \) are \(x = -1 \) and \(x = 2 \), the general solution to the recursion is

\[t_k = A(-1)^k + B2^k. \]

With \(k = 0, 1 \), we have \(A + B = 1 \) and \(-A + 2B = 3 \). Hence \(B = 4/3 \) and \(A = -1/3 \). Thus \(T(2^k) = (2^{k+2} - (-1)^k)/3 \).

(b) Determine the complexity class of \(T(n) \).

Ans. \(T(n) \in \Theta(n) \) by Theorem B.4.

4. (30 pts.) Suppose we have two sorted lists \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_n \), both of length \(n \), that we want to merge to obtain a sorted list of length \(2n \), say \(c_1, \ldots, c_{2n} \). To do this, we must decide where the \(a_i \)'s fit among the \(b_j \)'s to produce the \(c \) list. The number of choices for this is \(\binom{2n}{n} \geq 4^n/(2n^{1/2}) \).

Suppose the merge is done comparisons of keys. Using the above information, derive a lower bound for the worst case number of key comparisons that are needed. Explain your reasoning; don’t just give an answer.

Ans. Each comparison allows us the split the possibilities into two parts. The decision tree will be binary and must have at least \(\binom{2n}{n} \) leaves. Since the longest from root to leaf in such a tree is at least the log base 2 of the number of leaves, \(W(n) \geq \lceil \lg \binom{2n}{n} \rceil \). You could leave off the ceiling function. You could also use the lower bound for the binomial coefficient to get

\[W(n) \geq 2n - \lg 2 - (\lg n)/2. \]

By the way, this is nearly achieved by the merge process in mergesort: It’s worst case number of comparisons is \(2n - 1 \).
5. (30 pts.) Here is an informal description of a routine \texttt{Proc} that is looking for \(x \) in a sorted list \(S \). The parameters are the ends of the list. While it is looking it does some processing in \texttt{ProcLow} and \texttt{ProcHigh}.

\texttt{Proc(lo,hi)}
\begin{itemize}
 \item If \(lo > hi \) we are done.
 \item \(k = \lfloor (lo + hi)/2 \rfloor \).
 \item If \(S[k] = x \), we are done.
 \item If \(S[k] < x \)
 \begin{itemize}
 \item Call \texttt{ProcHigh}(\(k,hi \)) and \texttt{Proc}(\(k + 1,hi \))
 \end{itemize}
 \item Else
 \begin{itemize}
 \item Call \texttt{ProcLow}(\(lo,k \)) and \texttt{Proc}(\(lo,k-1 \))
 \end{itemize}
\end{itemize}
End.

We begin by calling \texttt{Proc(1,\(n \))}. Most of the time is spent in \texttt{ProcLow} and \texttt{ProcHigh}. In fact, \texttt{ProcLow}(\(a,b \)) requires \(\lg(b - a + 1) \) basic operations and \texttt{ProcHigh}(\(a,b \)) requires \((b - a + 1) \) basic operations. (You do \textit{not} need to know what any of this code is supposed to do.)

(a) Let \(W(n) \) be the worst case running time for \texttt{Proc(1,\(n \))}. Give a recursion and initial condition for \(W(2^n) \). (In the worst case, \(x \) is not in the list.)

\textbf{Ans.} When the length of the list is even, the part above \(k \) is exactly half of the list. The part below \(k \) is one shorter and also requires less processing time because of the “\lg”. Hence the worst case will be to always take the right half. Thus \(W(n) = W(n/2) + n/2 \). When \(n = 2^k \), \(W(2^k) = W(2^{k-1}) + 2^{k-1} \).

(b) Let \(A(n) \) be the average running time for \texttt{Proc(1, \(n \))}. Assuming \(x \) is not in the list and the probability that \(S[k] < x \) is \(1/2 \), give a recursion for \(A(n) \). You need \textit{not} give an initial condition.

\textbf{Ans.} When \(n \) is even, the reasoning in the previous answer gives

\[
A(n) = \frac{A(n/2) + n/2}{2} + \frac{A(n/2 - 1) + \lg(n/2 - 1)}{2}.
\]

When \(n \) is odd, similar reasoning gives

\[
A(n) = \frac{A((n-1)/2) + (n-1)/2}{2} + \frac{A((n-1)/2) + \lg((n-1)/2)}{2}.
\]

There’s no need to write this as a single recursion, but you can. One way to do so is

\[
A(n) = \frac{A([((n-1)/2)]) + [(n-1)/2]}{2} + \frac{A([(n-1)/2)]) + \lg([(n-1)/2])}{2}.
\]
6. (65 pts.) Indicate whether true or false. Beware of guessing:

 correct answer +5pts. incorrect answer −3pts. no answer 0pts

T $\Theta(2^{n+2}) = \Theta(2^n)$.
T $\Theta((n + 2)^2) = \Theta(n^2)$.
F $\Theta(2^{n+\log n}) = \Theta(2^n)$.
T $\Theta((n + \log n)^2) = \Theta(n^2)$.

T Greedy algorithms are called “greedy” because they make the best choice at the present time, without concern for the future.

T Dynamic programming algorithms use a bottom up approach.

F Divide and conquer algorithms use a bottom up approach.

T If a divide and conquer algorithm requires recomputing the same quantity many times, it is a good idea to look for a dynamic programming algorithm.

T No greedy algorithm is known for the 0-1 Knapsack Problem.

F It is usually fairly easy to determine average and worst-case time complexities for backtracking algorithms.

F There is a search algorithm that uses comparison of keys and is significantly faster on average and in the worst case than binary search.

F There is a sorting algorithm that uses comparison of keys and is significantly faster on average and in the worst case than mergesort.

T Quicksort has a good average run time and a poor worst-case run time.