1. (30 pts.) Recall that Dijkstra’s algorithm finds shortest paths from v_1 to all other vertices by adding edges linking in the closest points. In the graph shown below, each edge is bidirectional; that is, you can travel in either direction on it. **Edges are labeled with upper case letters.** (Two copies of the graph are provided so you can use one as a “worksheet” if you wish.)

(a) List edges in order chosen by algorithm:

(b) At each vertex, give the length of the shortest path from v_1 to the vertex. *Indicate which graph has your answer.*

2. (25 pts.) Consider the following eight complexity categories (remember $\lg = \log_2$):

$$
\Theta(n) \quad \Theta(n^2) \quad \Theta(2^n) \quad \Theta(3^{\lg n}) \quad \Theta(n^{\lg n}) \quad \Theta(n \lg n) \quad \Theta((\sqrt{n} + \ln n)^2) \quad \Theta(2^n+\lg n).
$$

(a) Which are equal?

(b) Arrange the distinct classes in order from slowest growing to fastest growing. In other words, if $\Theta(f(n))$ is to the left of $\Theta(g(n))$, then $f(n) \in o(g(n))$.

IF YOU WANT YOUR GRADE WITHOUT THE FINAL:

CROSS OUT PROBLEM 1, HAND IN YOUR EXAM, AND TELL US.

There are 210 points possible.
3. (30 pts.) The average running time for an algorithm is a nondecreasing function of n and satisfies $T(4n) = T(2n) + 2T(n)$ for all $n > 0$. Furthermore, $T(1) = 1$ and $T(2) = 3$.

(a) Determine $T(2^k)$ as a function of the integer k.

Hint: Set $t_k = T(2^k)$.

(b) Determine the complexity class of $T(n)$.

4. (30 pts.) Suppose we have two sorted lists a_1, \ldots, a_n and b_1, \ldots, b_n, both of length n, that we want to merge to obtain a sorted list of length $2n$, say c_1, \ldots, c_{2n}. To do this, we must decide where the a_i's fit among the b_j's to produce the c list. The number of choices for this is $\binom{2n}{n} \geq 4^n/(2n^{1/2})$.

Suppose the merge is done comparisons of keys. Using the above information, derive a lower bound for the worst case number of key comparisons that are needed. Explain your reasoning; don’t just give an answer.
5. (30 pts.) Here is an informal description of a routine Proc that is looking for x in a sorted list S. The parameters are the ends of the list. While it is looking it does some processing in ProcLow and ProcHigh.

$$\text{Proc}(lo, hi)$$

If $lo > hi$ we are done.

$k = \lfloor(lo + hi)/2\rfloor$.

If $S[k] = x$, we are done.

If $S[k] < x$

Call $\text{ProcHigh}(k, hi)$ and $\text{Proc}(k + 1, hi)$

Else

Call $\text{ProcLow}(lo, k)$ and $\text{Proc}(lo, k - 1)$

Endif.

We begin by calling $\text{Proc}(1, n)$. Most of the time is spent in ProcLow and ProcHigh. In fact, $\text{ProcLow}(a, b)$ requires $\lg(b - a + 1)$ basic operations and $\text{ProcHigh}(a, b)$ requires $(b - a + 1)$ basic operations. (You do not need to know what any of this code is supposed to do.)

(a) Let $W(n)$ be the worst case running time for $\text{Proc}(1, n)$. Give a recursion and initial condition for $W(2^n)$. (In the worst case, x is not in the list.)

(b) Let $A(n)$ be the average running time for $\text{Proc}(1, n)$. Assuming x is not in the list and the probability that $S[k] < x$ is 1/2, give a recursion for $A(n)$. You need not give an initial condition.
6. (65 pts.) Indicate whether true or false. Beware of guessing:

 correct answer +5pts. incorrect answer −3pts. no answer 0pts

___ $\Theta(2^{n+2}) = \Theta(2^n)$.

___ $\Theta((n + 2)^2) = \Theta(n^2)$.

___ $\Theta(2^{n+\lg n}) = \Theta(2^n)$.

___ $\Theta((n + \lg n)^2) = \Theta(n^2)$.

Greedy algorithms are called “greedy” because they make the best choice at the present time, without concern for the future.

___ Dynamic programming algorithms use a bottom up approach.

___ Divide and conquer algorithms use a bottom up approach.

___ If a divide and conquer algorithm requires recomputing the same quantity many times, it is a good idea to look for a dynamic programming algorithm.

___ No greedy algorithm is known for the 0-1 Knapsack Problem.

___ It is usually fairly easy to determine average and worst-case time complexities for backtracking algorithms.

___ There is a search algorithm that uses comparison of keys and is significantly faster on average and in the worst case than binary search.

___ There is a sorting algorithm that uses comparison of keys and is significantly faster on average than and in the worst case than mergesort.

___ Quicksort has a good average run time and a poor worst-case run time.