1. (30 pts.) Answer briefly in English using a minimum of mathematics.
 (a) What is the Church-Turing thesis regarding Turing machines?
 Ans. Turing machines can do the same things computers can do. In other words, any
 computer algorithm can be done on a Turing machine.
 (b) How do certificates and verifiers relate the class NP to ordinary Turing machines?
 Ans. Various answers are possible. The basic idea is that
 \[L \in \text{NP} \text{ if and only if } \exists \text{ a Turing machine } V \text{ (a verifier) such that every } w \in L \text{ has a certificate } c(w) \text{ and } V \text{ accepts the input } w, c(w) \text{ precisely for those } w \in L. \]
 (c) What does “M accepts the string w” mean when M is a nondeterministic automaton
 or Turing machine?
 Ans. It means that there is some way for M to reach an accept state. (For an au-
 tomaton, the accept state must be reached at the end of the input; for a Turing
 machine, it can be reached anytime.)

2. (30 pts.) Write regular expressions for the following when \(\Sigma = \{0, 1\} \).
 (a) \((\Sigma^* 1) \cap (1 \Sigma^*). \)
 Hint: First describe the strings in the language without using “not.”
 Ans. This is the strings that do not end in 1 and do not start in 1. A regular expression
 is \(\epsilon \cup 0 \Sigma^* 0. \)
 (b) \(\{ w \mid w \text{ has an even number of } 0\text{'s, or } 1\text{'s, or both} \}. \)
 (For example, \(\epsilon, 010, 110, \text{ and } 1010 \text{ are in the language, but } 01 \text{ is not.} \)
 Ans. An even number of 0’s: \((1^*01^*01^*)^* \text{ or } 1^*(01^*01^*)^* \text{ are possibilities. Interchanging } 0\text{ and } 1\text{ gives the result for an even number of } 1\text{'s. Taking the union gives both: } \)
 \((1^*01^*01^*)^* \cup (0^*10^*10^*)^*.\)
3. (45 pts.) Beware of guessing:

 correct answer +5pts. incorrect answer −3pts. no answer 0pts

F A nondeterministic Turing machine can recognize more languages than a standard Turing machine.

T Context free grammars can generate languages that DFAs cannot recognize.

F Context free grammars can generate languages that Turing machines cannot recognize.

T \{a^k b^k \mid 0 \leq k \leq 5\} is a regular language.

F There are polynomial time algorithms for some NP-complete problems.

F If \(L \) is an NP-complete language and \(M \) is polynomial-time reducible to \(L \), then \(M \) is also an NP-complete language.

T The class of regular languages is closed under complementation.

F The class of context-free languages is closed under complementation.

F The class of Turing-recognizable languages is closed under complementation.

4. (30 pts.) Construct CFGs that generate the following languages when \(\Sigma = \{0, 1\} \).

(a) \(\{ww^R \mid w \in \Sigma^*\} \), where \(w^R \) is the reverse of the string \(w \).

Ans. \(S \rightarrow \epsilon \mid 0S0 \mid 1S1. \)

(b) \(\{0^i1^j0^k \mid i + j = k\} \).

Ans. \(S \rightarrow 0S0 \mid A \quad A \rightarrow \epsilon \mid 1A0. \)
5. (30 pts.) Construct PDAs that recognize the following languages when $\Sigma = \{0, 1\}$.

(a) $\{w \mid w \text{ contains at least two } 1\text{'s}\}$.

Ans. Here’s a verbal description. This machine doesn’t even need a stack!
- Loop in the start state until a 1 is seen, then move to q_1.
- Now loop in q_1 until a 1 is seen and then move to q_2, which is the only accept state.
- Loop in q_2 until the input is read.

(b) $\{0^i1^j0^k \mid \text{where } i + k = j\}$. Warning: This is not the same language as in 4(b).

Ans. Here’s a verbal description. (As usual, if the PDA gets “stuck” in a state, that’s a reject.)
- Mark the start of the stack with $\$.
- Push 0’s onto the stack as long as 0’s are read (a single 0 for each 0 read).
- When 1’s start being read, pop 0’s off the stack as long as 0’s are present, popping a single 0 for each 1.
- Pop a $\$ off the stack and push it back on.
- Push 1’s on the stack as long as 1’s are read (one for one).
- Pop 1’s off the stack as long as 0’s are read (one for one).
- Pop $\$ off the stack and move to the accept state.
6. (30 pts.) \(\text{NEQ} \text{CFG} \) is the set of pairs \(G_1, G_2 \) of CFGs such that \(G_1 \) and \(G_2 \) generate different languages. Prove that \(\text{NEQ} \text{CFG} \) is Turing-recognizable. That is, prove that you can build a Turing machine that will take two CFGs and accept them if and only if they produce different languages.

Remark: To “build a Turing machine,” it is sufficient to give a high level description of an algorithm — you need not give details such as state transitions and tape reading/writing.

Hint: Since CFGs can be put in Chomsky normal form, assume that \(G_1 \) and \(G_2 \) are in Chomsky normal form.

Ans. Let \(G_1 \) and \(G_2 \) be in Chomsky normal form. For each \(n > 0 \):

- Generate all possible strings from \(G_1 \) that involve at most \(2n \) substitutions.
- Discard all strings of length greater than \(n \).
- Discard all strings that contain variables.
- Repeat the above steps for \(G_2 \).
- If the two sets of strings differ, accept.

(This will work because all strings of length \(n \) is a language are derivable in less than \(2n \) steps when the grammar is in Chomsky normal form.)

7. (30 pts.) Prove that \(P \) (the class of languages decidable in polynomial time) is closed under complementation and union.

Ans. Suppose \(L \) is in \(P \). To decide \(\overline{L} \), run the Turing machine that decides \(L \). It will either accept or reject in polynomial time. Do the reverse.

Ans. Suppose \(L_1 \) and \(L_2 \) are in \(P \). To decide \(L_1 \cup L_2 \), run the Turing machines that decide \(L_1 \) and \(L_2 \). Since each decides in polynomial time, this takes polynomial time. If both machines reject, then reject; otherwise, accept.