1. (a) This can be done in various ways:

- Best is to take a value on each side of the (50,10) entry and form the finite difference:

 \[w_s(50,10) \approx \frac{37 - 21}{60 - 40} = \frac{16}{20} = 0.8 \quad \text{and} \quad w_t(50,10) \approx \frac{36 - 19}{15 - 5} = \frac{17}{10}. \]

- Not as good is to take a value at the point and a point on one side (but this is still acceptable):

 \[w_s(50,10) \approx \frac{37 - 29}{60 - 50} = \frac{8}{10} = 0.8 \quad \text{or} \quad w_s(50,10) \approx \frac{29 - 21}{50 - 40} = \frac{8}{10} \]

 \[\text{and} \quad w_t(50,10) \approx \frac{36 - 29}{15 - 10} = \frac{7}{5} = 1.4 \quad \text{or} \quad w_t(50,10) \approx \frac{29 - 19}{10 - 5} = \frac{10}{5} = 2. \]

(b) The units of \(w_s \) are feet per knot and those of \(w_t \) feet per hour.

If you have singular or plural where you should not (foot, knots, hours), you will still receive credit.

(c) The answer is \(w(50,10) + w_s(50,10) \times (-1) + w_t(50,15) \times 1 \). You should plug in the numbers you got in (a).

2. By the chain rule

\[f'(1) = g_x(x(1), y(1))x'(1) + g_y(x(1), y(1))y'(1) \]

\[= 1 \times 1 + (-2) \times 3 = -5. \]

(b) Since \(f_{xy} = f_{yx} \), we’ll compute \(f_x \) first. It is \(3x^2y \). Thus \(f_{xy} = \partial(3x^2y)/\partial y = 3x^2 \).

(c) \(|\langle 1, 2 \rangle| = \sqrt{1^2 + 2^2} = \sqrt{5} \). Thus \(u = \langle 1/\sqrt{5}, 2/\sqrt{5} \rangle \). Since \(\nabla f = \langle 2x - 2y, 2x \rangle \), we have \(\nabla f(0,1) = \langle -2, 0 \rangle \) Finally \(D_u f(0,1) = \nabla f(0,1) \cdot u = -2/\sqrt{5} \).

3. The gradient is \(\langle 6x, 2y, 4z \rangle \), which equals \(\langle 6, -8, 4 \rangle \) at \((1, -4, 1) \). Thus the equation of the plane is

\[0 = \langle 6, -8, 4 \rangle \cdot \langle x - 1, y + 4, z - 1 \rangle = 6x - 8y + 4z - 42, \]

which can be rewritten as \(3x - 4y + 2z = 21 \). Any of these forms, including the dot product form, is acceptable.

4. Since we are given the critical points, we only need to compute \(f_{xx}, f_{xy}, f_{yy} \) and \(D = f_{xx}f_{yy} - (f_{xy})^2 \) there.

quantity	at \((x, y) \)	at \((0,0) \) at \((1, \sqrt{2}) \) at \((1, -\sqrt{2}) \)		
\(f_{xx} \)	-2	-2	-2	-2
\(f_{xy} \)	-2y	0	-2\sqrt{2}	2\sqrt{2}
\(f_{yy} \)	2x - 2	-2	0	0
\(D \)	4(1 - x - y^2)	4	-8	-8

By the second derivative test, \((0,0) \) is a local maximum and the other two are saddle points.